
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THJLSIS

IMPLEMENTATION OF THE SNR HIGH-SPEED
TRANSPORT PROTOCOL (THE TRANSMITTER PART)

by

Farah Mezhoud

March 1995

Thesis Advisor: Gilbert M. Lundy

Approved for public release; distribution is unlimited.

19950510 032
'.Ü -i

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time reviewing instructions, searching existing data sources
gathering and maintaining the data needed, and completing and reviewing the collection of information Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE
March 1995

3. REPORT TYPE AND DATES COVERED
Master's Thesis

4. TITLE AND SUBTITLE
Implementation of the SNR High-Speed Transport Protocol (the

Transmitter Part)

6. AUTHOR(S)

Mezhoud, Farah

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES)

5. FUNDING NUMBERS

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSORING/ MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES , „ , , , , a u re • i i-
The views expressed in this thesis are those of the author and do not reflect the official policy or position
of the Department of Defense or the United States Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words) .
The major problem addressed by this research is how to implement a transport protocol invented especially tor high speed

networking using the current workstations, so that the high throughput promised by the protocol will be achieved. The
approach taken was to implement the SNR protocol, a transport protocol for high speed networking, named after its inventors,
and composed of eight different machines (four transmitter and four receiver), using three Unix workstations connected with
FDDI, allowing a throughput up to 100 Mbps.
This thesis is the implementation of the transmitter part of the protocol; the receiver part is done in parallel in a separate thesis.
The four transmitter machines are implemented as four different Unix processes working in parallel and communicate through
shared memory which provides the fastest means of exchanging information between processes. The protocol is implemented
on top of the Internet Protocol layer using the "raw socket" as interface to access the IP facilities. The C programming language
was used for the software implementation in order to access efficiently to the Unix system calls and thus reduce the overhead
of the operating system.
This thesis shows that these new protocols can be successfully implemented using the current workstations and we expect that
in a multiprocessor environment, where each machine is dedicated to a different processor, we will have even better
performance.

14. SUBJECT TERMS , . t , , , , .
SNR, protocol, implementation, high-speed, shared memory, raw socket

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

78
1Ä. PRICE CODE

20. LIMITATION OF ABSTRACT

Unlimited

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

XI

Approved for public release; distribution is unlimited

IMPLEMENTATION OF THE SNR HIGH-SPEED TRANSPORT PROTOCOL
(THE TRANSMITTER PART)

by

Farah Mezhoud
Major, Tunisian Army

Electronic Engineer, ESEAT France, 1985

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL

March 1995

Author:

Approved By:

-> '-a.
^

J°

Farah Mezhoud

Ted Lewis, Chairman,
Department of Computer Science

111

IV

ABSTRACT

The major problem addressed by this research is how to implement a transport

protocol invented especially for high speed networking using the current workstations, so

that the high throughput promised by the protocol will be achieved.

The approach taken was to implement the SNR protocol, a transport protocol for

high speed networking, named after its inventors, and composed of eight different

machines (four transmitter and four receiver), using three Unix workstations connected

with FDDI, allowing a throughput up to 100 Mbps.

This thesis is the implementation of the transmitter part of the protocol; the receiver

part is done in parallel in a separate thesis. The four transmitter machines are implemented

as four different Unix processes working in parallel and communicate through shared

memory which provides the fastest means of exchanging information between processes.

The protocol is implemented on top of the Internet Protocol (IP) layer using the "raw

socket" as interface to access the IP facilities.

The C programming language was used for the software implementation in order

to access efficiently to the Unix system calls and thus reduce the overhead of the operating

system.

This thesis shows that these new protocols can be successfully implemented using

the current workstations and we expect that in a multiprocessor environment, where each

machine is dedicated to a different processor, we will have even better performance.

Accesion For

NTIS CRA&I
DTIC TAB
Unannounced
Justification

9
a

By..
Distribution/

Availability Codes

Dist

m.
Avail and /or

Special

VI

TABLE OF CONTENTS

I. INTRODUCTION 1
A. BACKGROUND 1
B. OBJECTIVES 3
C. ORGANIZATION OF THE THESIS 3

II. SNR PROTOCOL 5
A. INTRODUCTION 5

1. Problems with Existing Protocols 5
2. Introduction to the SNR Protocol 6

B. DESIGN AND ORGANIZATION 7
C. PROTOCOL SPECIFICATION 9

1. Transmitter Processes 9
2. Receiver Processes 14

in. IMPLEMENTATION OF THE TRANSMITTER 19
A. GENERAL APPROACH 19

1. Introduction 19
2. The Raw Socket 20
3. Shared Memory 21
4. Timing Mechanism 22
5. Using Signals 23

B. TRANSMITTER MACHINES 23
1. Time Dependency 23
2. Critical Sections and Synchronization 24
3. SNR Packets Formats 26
4. Data Structure 32
5. Functions used by Transmitter Machines 35

C. MACHINE IMPLEMENTATIONS 44
1. T2_slave Process 44
2. Process Tl 46
3. Process T2 49
4. Process T3 54
5. Process T4 57

IV. CONCLUSIONS AND RECOMMENDATIONS 61
LIST OF REFERENCES 65
INITIAL DISTRIBUTION LIST 67

vu

Vlll

LIST OF FIGURES

Figure 1: OSI Protocol Stack 2
Figure 2: Network, Hosts, Entities and Protocol Processors 7
Figure 3: Machine Organization Including the Shared Variables 10
Figure 4: Tl State Diagram and Predicate-Action Table 11
Figure 5: T2 State Diagram and Predicate-Action Table 12
Figure 6: T3 State Diagram and Predicate-Action Table 13
Figure 7: T4 State Diagram and Predicate-Action Table 14
Figure 8: Rl State Diagram and Predicate-Action Table 15
Figure 9: R2 State Diagram and Predicate-Action Table 16
Figure 10: R3 State Diagram and Predicate-Action Table 16
Figure 11: R4 State Diagram and Predicate-Action Table 17
Figure 12: Timing Dependency 25
Figure 13: SNR Header Definition 28
Figure 14: C Definition of the Receiver Control Packet (typeO) 28
Figure 15: C Definition of the Transmitter Control Packet 29
Figure 16: C Definition of the Data Packet 30
Figure 17: C Definition of Connection Request Packet 31
Figure 18: Data Structure of the Global Variables in Shared Memory 32
Figure 19: OUTBUF Ring Buffer Structure 33
Figure 20: FLAG Structure 34
Figure 21: LUP Structure 34
Figure 22: Structure of Shared Memory between T2 and T2_slave 34
Figure 23: R_CHANNEL Structure 35
Figure 24: RCH Structure 35

I. INTRODUCTION

A. BACKGROUND

Transmitting data at higher speeds has been the focus of many researchers for

several years. As fiber optics is becoming more and more the media of choice to

interconnect different types of computers, allowing the transmission of gigabits of

information per second, network researchers and designers place more strain on the

performance processing to match the data rates of fiber optic networks.

Fiber optics offers higher data transmission rates and lower error rates than copper

wire, which justifies the need of change in design philosophy. New high speed protocols

emphasize streamlining the normal data transmission processing for maximum throughput

[Ref. 19] and thus, increasing channel utilization in the presence of high speed, long latency

networks.

The International Standards Organization (ISO) proposed a model for networks

which has evolved into the ISO Open Systems Interconnection (OSI) [Ref. 20]. This model

provides a definition of what each of seven network layers should be able to do. The

relationship between these OSI seven layers is shown in Figure 1.

The transport protocol is considered by many network people as the keystone of the

whole concept of a computer communications architecture [Ref. 18]. It provides the basic

end-to-end service of transferring data between hosts. Any process or application can be

programmed to access directly the transport services without going through session and

presentation layers. Consequently, transport layer can be a source of processing overhead

and may be responsible for the low throughput of the whole system since it has several

critical functions related to data transfer [Ref. 3]. This includes detecting and correcting

errors in received packets, usually through retransmission, providing a flow control

mechanism for the system and delivering packets in order to the higher layers.

The performance of existing transport protocols is limited not only by the processor

speed and memory access times but also by the processing overhead in the operating

Application

Presentation

Session

Transport

Network

Data Link

Physical

Figure 1: OSI Protocol Stack

system. The author in [Ref. 18] suggested two approaches to overcome the difficulties

encountered in transport protocols that led to low performance in presence of high speed

networks.

The first approach is to adapt the conventional transport protocol to the new

internetworking technology by improving its implementation. Research that has been done

in this area show that the ability to provide high bandwidth to high speed network users

depends heavily on protocol implementation [Ref. 19]. The idea here is to take advantage

of the long experience gained with the existing protocols and thus avoid certain

implementation problems believed to be the cause of their slowness. Some of these

problems are the transfer of data from the user, timer management, buffer management,

connection state management, inter-process communication and scheduling.

The second approach is to invent new protocols devoted to be used in presence of

high speed network.These new protocols, called lightweight transport protocols, are

designed to offer higher throughput. Example of these protocols are VMTP (Vertasile

Message Transaction Protocol), NETBLT (Network Bulk Transfer), XTP (Express

Transfer Protocol) and SNR, named after its inventors (Sabnani, Netravali and Roome)

from AT&T bell laboratories.

In order to provide the high throughput, VMTP uses selective retransmission for

error recovery, groups packets into blocks and transmits large groups of packets in a burst

as fast as the network allows, rather than using rate control. This method is found to be

more efficient in processing cost [Ref. 3]. NETBLT also groups packets into blocks, uses

a rate control scheme (packet per second) based on the network congestion and selective

retransmission is used for error recovery. XTP on the other hand is designed to be

implemented in hardware and it combines the transport layer with the network layer. Flow

control is achieved through the use of parameters which provide visibility of the receiver's

buffer to the transmitter. It also uses rate control and the selective repeat method for error

recovery.

B. OBJECTIVES

In the Naval Postgraduate School, more and more attention has been given to these

new protocols. In particular, Lundy and Tipici conducted research in 1993 on the SNR

protocol [Ref. 3]. They used a System of Communicating Machines (SCM) to analyze the

protocol and verify that it is free from logical errors. In their conclusion they posed the

question whether this protocol efficient enough to provide the high throughput which is

expected from the lightweight transport protocols.

This thesis is a continuing work on this transport protocol and an attempt to answer

this question by implementing the transmitter part on the current workstations and

performing realistic performance tests. The implementation of the SNR receiver is being

conducted in parallel in a separate thesis by W. J. Wan [Ref. 22]. Our major goal in this

work is to optimize the implementation in order to reduce the processing overhead and thus

achieve the high throughput, promised by this protocol. A third research is conducted in

parallel by R. Grier [Ref. 23] to test and verify our SNR implementation.

C. ORGANIZATION OF THE THESIS

In this implementation we follow very closely the specification introduced in [Ref.

3]. In order to make this thesis independently readable, the state diagram and the Predicate

Action Table of each of the SNR machines are reproduced in this thesis. Some corrections

and implementation details are added to the protocol and will be pointed out as necessary.

The thesis is organized into four chapters. Chapter II discusses the problems with

existing protocols and introduces the specification of the SNR protocol (transmitter and

receiver), including the state diagram and Predicate Action Table of each machine. Chapter

III discusses the approach taken to implement the transmitter part, the algorithm of each

transmitter machine is given. Finally we conclude in Chapter IV, along with some

recommendations and future work that can be done as continuation on the same subject.

II. SNR PROTOCOL

A. INTRODUCTION

1. Problems with Existing Protocols

In this section we will discuss briefly some of the problems that are considered to

be the most important cause of the under utilization of the full potential offered by the fiber

optic technology and therefore must be avoided when designing lightweight protocols.

Existing protocols were designed when the processing speed of the CPU's was

higher than the bit rates provided by the media and for that reason, one of the important

consideration of their design was not to saturate the transmission media with high data

rates. Today, with the introduction of fiber optic technology, the problem is reversed and

the bottleneck has moved to the communications processing part of the system.

Protocols must be interfaced with the host operating system, a required support to

move data from one host to another (interrupts, I/O devices, buffers...). Some suggestions

are made [Ref. 21] to get the best support from the operating system:

. Parallel processing of independent functions of the protocol,

. Avoiding the movement of data in memory, since this is the most costly operation

in packet processing,

. Making minimal use of operating system timer package.

The overhead of managing timers can sometimes be a burden.Timers are used to

recover from channel losses. In a positive acknowledgment scheme, there must be a timer

associated with every packet. A timer must be set, monitored, cleared and reset every time

a packet is sent or received.

Another problem associated with timers is the values that this timers must be set to,

which they depend on the round trip delay (RTD). Often the RTD can not be predicted with

accuracy since it varies with the condition of the networks.

When slow underlying conventional networks were used, the major issue was not

to overflow channels and for that reason, variable size packets, that are just large enough

to fulfill the need, were used, increasing the processing time at the receiver due to decoding

operations. This was not a problem since the bit rates in the network was slow anyway. But

with high speed networks, trying to minimize the packet size is just a wasted effort and for

this reason standard packet format are used.

The Go-Back-N method for error recovery is another defect of current protocols.

Whenever the receiver detects a loss of a packet, it sends a negative acknowledgment

message (NAK) to the transmitter, requiring retransmission of all the packets after the last

correctly received one. If the data rates are high or the retransmission channel is long, this

method may require many good packets to be retransmitted, causing significant loss of

throughput.

A conservative flow control scheme which uses the sliding window technique may

limit the throughput of the protocol in long-delay situations [Ref. 18]. This is because the

sliding window does not decuple acknowledgments from flow control. In the transmitter

side, the window size is increased only by acknowledgments from the receiver. On the

other hand, if the first packet of a given window gets lost, the receiver can not acknowledge

any of the rest of the packets and has to wait for the lost packet to be recovered. At the same

time, we can have a situation where the transmitter also has to wait for its window to be

increased.Therefore, both transmitter and receiver are waiting for the retransmitter timer to

expire. A better solution is to separate this two functions.

2. Introduction to the SNR Protocol

The SNR protocol was first introduced in [Ref. 12], then in [Ref. 2] a formal

specification was given using the System of Communicating Machines (SCM) model, and

finally in [Ref. 3] a further study was given on the protocol to refine and improve the SCM

specification by applying the associated system analysis. More details about the protocol

can be found in [Ref. 3] from which graphs and tables are reproduced in this chapter.

The SNR protocol requires a full duplex link between two host computers

connected across a high speed network as shown in Figure 2.

Host Host

Entities
1 h

Protocol
Processor

1 L 1 r

1 V

Entities
A 1

Protocol
Processor

J 1 1 1

-1 1

Figure 2: Network,Hosts,Entities and Protocol Processors

Each host system in the network consists of eight finite state machines (FSM), four

for the transmitter and four for the receiver. Each machine in the protocol has a specific

function in coordination with the other machines

B. DESIGN AND ORGANIZATION

To overcome the difficulties of the current transport protocols, discussed earlier in

this chapter, some design principles are followed when designing the SNR protocol in order

to simplify the protocol and reduce the processing overhead of the operating system.

Unlike most current protocols where status messages are exchanged only when

certain events occur, in the SNR protocol full state information is exchanged between

transmitter and receiver on a regular basis and therefore, the generation of

acknowledgments is totally decoupled from the data traffic. Although this technique

increases the number of packets transmitted, which is negligible compared to the very high

bandwidth of the fiber and the speed up it provides in processing, it has the advantage of

simplifying the protocol and allowing parallel protocol processing which leads to higher

performance.

In order to avoid wasting the network resources caused by the retransmission of

thousands of good packets when using the Go-Back-N error recovery method, the SNR

protocol uses selective repeat method of retransmission, and the concept of blocking.

Blocking reduces the overhead of maintaining large tables and complex procedures that are

required for the selective repeat method. A group of packets (typically 8) is called a block.

Packets within the block are transmitted and treated separately by the network. Upon

successful reception of all of the packets in a block, the receiver acknowledges the block,

rather than the individual packets. If a packet in a block gets lost, then the whole block of

packets is retransmitted. Despite the retransmission of some good packets in the block, this

method is used in order to simplify the protocol and thus gain in processing speed knowing

that fiber-optic media supporting the protocol has very low error rates.

A very important idea used in designing the SNR protocol that contributes

significantly to the improvement of the performance, is the concurrent execution of several

independent functions of the protocol. The four machines on each side (transmitter and

receiver) execute in parallel with small interaction between them.

Flexibility is another key of the SNR protocol and it is illustrated by specifying

three modes of operation:

Mode 0 is the simplest mode and has no error control or flow control. It is suited for

virtual circuit networks and for the cases where quick interaction between the

communicating entities is desired and short packets are used.

Mode 1 has no error control but provides flow control. It is suitable for real time

applications where error control is not needed and packet sizes are small.

Mode 2 has both error control and flow control. It is useful for large file transfers

in all types of network services.

The way flow control is done in SNR protocol is as follows:

The receiver writes the available buffer space it has in units of blocks into the

buffer-available field of the receiver control packets, and the transmitter maintains the

variables L, the maximum window size in units of blocks which will be chosen slightly

larger than (RTD * maximum bandwidth)/number of bits in a block, and NOU, the number

of outstanding blocks which have been transmitted but not yet acknowledged. Every time

the transmitter completes the transmission of a block of packets, it increments NOU, and

every time it receives a receiver control packet it decrements NOU by the number of

acknowledged blocks. It starts the transmission of another new block only if NOU is less

than L and buffer-available is greater than NOU.

C. PROTOCOL SPECIFICATION

The general organization of the eight machines, including global variables through

which machines communicate, is shown in Figure 3. Details of implementing the

transmitter part will be left to the next chapter.

1. Transmitter Processes

a. Process Tl

Transmission of new data packets and retransmission of unacknowledged

packets is done by machine Tl. The state diagram and the Predicate Action Table of Tl are

shown in Figure 4.

Machine Tl starts executing its functions when the global variable T_active

is set to TRUE by machine T2 upon successful connection establishment. In mode 0, Tl

transmits data as long as T_active remains TRUE and there is data in the buffer OUTBUF.

Every time the transmission of a block is completed, it increments the variable UWt

(transmitter upper window).

In mode 1 and in order to provide the flow control, a new block is

transmitted only if the receiver has space in its buffer and the maximum window size has

not been exceeded. The block is transmitted if NOU < L and buffer_available - NOU > 0.

NOU is incremented every time a complete block is transmitted. It is decremented by

machine T2 by the number of acknowledged blocks read from the receiver state

information packet.

In mode 2 if the "count" field of any block in the LUP table becomes 0, then

Tl stops transmitting new packets and retransmits all packets in the expired block, count is

reinitialized to 0 when the whole block is retransmitted. The variables UWt and NOU are

incremented and a new entry in LUP table is made every time the transmission of a new

block is completed.

tail

OUTBUF

~~1
"L

1—»•

T4
(Host interface)

Transmit

Accept
Fail

T_active

Disconnect

NOU

buffer

LUP table
Sec] count Ack

, T1
(Send new blocks
and retransmit

old blocks)

T CHAN Rl
(Receive
data packets)

T2
(Connect;

process incoming
control packets)

T_CHAN
(Connect;

process incoming
control packets) R_CHAN

T3
(Send transmitter

control packets)

R3
(Send receiver

control packets)

INBUF

RECEIVE

R4
(Host interface)

R active

received
Disconnect
Buffer avail

LWr

UWr

1 1 1 1
AREC

Figure 3: Machine Organization Including the Shared Variables

b. Process T2

Process T2 has to establish the connection, receive and process the receiver

control packets and finally terminate the connection. State diagram and Predicate Action

Table are shown in Figure 5.

Process T2 begins when the global Transmit is set to TRUE by T4. It then

sends a "conn_req" packet with negotiated parameters and receives the answer "conn_ack"

10

packet with the same parameters set by the receiver, and if they agree on these parameters,

it sends a "con_conf' packet to the receiver to confirm the connection and sets the global

variable Tractive to TRUE, allowing the other transmitter machines to begin executing in

Transition Predicate Action

start T_active=T null
finish T_active=F null
retransmit T_active=T A

mode= 2 A Expired(LUP) /=0
Packet.seq:=(Expired(LUP)-1)*block_size+

retranscount;
Packet.data:=OUTBUF(Packet.seq mod

OUTBUF'length);
Enqueue(Packet,T_CHAN);
sent:= T;
inc (retrans_count);
if retrans_count > block_size then

retrans count:=l;
LUP((Expired(LUP)-l) mod L+l).count:=

initial value;
end if;

transmit
blk

T active=T A

not (Empty(OUTBUF))A

trans count <= blk_size A

(mode=0v((NOU<LA

buffer - NOU>0)A

(mode=l v Expired(LUP)=0)))

retrans_count := 1;
Packet.seq:=UWt * block_size +

trans_count;
Dequeue(Packet.data,OUTBUF);
Enqueue(Packet,T_CHAN);
sent:=T;
inc (trans_count);

blk_
completed

transcount > blk_size trans count := 1;
inc (UWt);

no_flow mode = 0 null
flow_chk mode=l v mode = 2 inc (NOU);
no_err mode = 1 null
err_chk mode = 2 Insert (ÜWt, LUP);

Figure 4: Tl State Diagram and Predicate-Action Table

parallel. The connection is terminated by sending a "disc" packet when the global

variable Transmit is set to FALSE by T4. During data transfer, T2 receives the receiver

control packets and depending on the mode of operation, the following actions are taken:

. Scount is reset to 0 (more explanation of the use of this variable in T3)

. NOU is incremented by the number of acknowledged blocks (mode 1 and

mode 2)

11

. LWr is copied into LWt, LOB bit field is copied into HOLD, and buffer-

available field of the receiver control packet is copied into buffer-available (mode 1 and 2)

. Acknowledged packets are removed from OUTBUF and from LUP table

. count field in LUP table of the unacknowledged blocks are decremented

by the number of the received k.

finish

unaccept

accept

no err
err chk

no flow

discard
lupdate

flow chk Q

Transition Predicate Action
request Transmit=T A Accept=T A Fail=F Enqueue {Conn Req, T_CHAN);
accept RJJHAN (front) = Conn AckA

Acceptable (RJJHAN(front))
Inactive := T;
Enqueue (Conn Conf, TJJHAN);
Dequeue (RJJHAN);

unaccept RJJHANtfront) = Conn Ack*
not (Acceptable (R_CHAN(front)))

Accept:=F;
Dequeue (RJJHAN);

clock Empty (RJJHAN) A clockJick inc (delay);
ok delay < reset null
timeout delay = reset inc (attempts); delay;=0;
retry attempts < max_attempts Enqueue (Conn Req, TJJHAN)
quit attempts = max_attempts Fail:=T
finish Transmit = F A Empty (OUTBUF) A

Disconnect = F A

((mode = 2 A Empty (LUP)) v
mode = 1 v mode = 0)

T_active;=F;
Enqueue (Disc, TJJHAN);

abort Disconnect = T T active:=F; Transmit:=F;
rcv_state not (Empty (R_CHAN))A Disconnect=F null
discard RJJHAN (front), seq <= high v

RJJHAN(front)=Conn Ack
Oequeue(RJJHAN);

update RJJHAN(front).seq > high scount:=0; high:=RJJHAN(front).seq;
nojlow mode = 0 Dequeue(RJJHAN);
fiow_chk mode = 1 v mode = 2 Balance(R CHAN(front).LOB,HOLD,

R CHAN(front).LWr, LW„
NOU);

HOLD:=R CHAN(front).LOB;
LWt := RJJHAN(front).LWr;
buffer := R CHAN(front).buffer avaü.
Update outbuf (OUTBUF, LW^;

no_err mode = 1 Dequeue (RJJHAN);
err_chk mode = 2 Update LUP (LUP, HOLD, LWt,

RJJHAN(front).k);
Dequeue (RJJHAN);

Figure 5: T2 State Diagram and Predicate-Action Table

12

c. Process T3

T3 starts when T_active is set to TRUE by machine T2 and executes its

function each time a clock-tick occurs. Details of implementing the clock-tick are left to

the next chapter. State diagram and Predicate Action Table of T3 are shown in Figure 6.

Transition Predicate Action
start l_active=l
clock clock tick A 'l'_active = 1 inc (scount)
no data sent=F inc (count)
delay count < k A scount < Lim null

timeout count = kv scount >= Lim Enqueue (7\stofe,T_CHAN);
k:= min (2*k, klim)

data sent = I Enqueue (ljtate, TJJHAN);
k:=l

no disc scount < Lim sent:= F; count:= 0
disc scount = Lim Disconnect— 1

confirm T_active = F null
finish T_active = F null

Figure 6: T3 State Diagram and Predicate-Action Table

The main function of process T3 is to transmit periodically the transmitter

control packets. In addition, and if no receiver control packets are received for a

predetermined amount of time, it initializes an abnormal connection termination. For this

purpose,it increments Scount every time it transmits a control packet, and T2 sets this

variable to 0 every time it receives a receiver control packet. If Scount ever reaches a

predetermined value Lim, then T3 sets the variable Disconnect to TRUE which causes T2

to send a "disc" packet and sets T_active and transmit to FALSE.

T3 transmits control packets depending on the global variable Sent, which

is set to TRUE by process Tl after every data packet transmission.

If Sent is TRUE, a control packet is sent and the variable Sent is reset to

FALSE. If Sent is FALSE, then k is recalculated using the formula k=MIN (2*k, k*Lim)

and control packet transmission is delayed for k*Tin seconds, where Tin is the period of the

13

clock-tick mechanism. If meanwhile Sent becomes TRUE, then T3 stops waiting and

transmits the packet and resets k to 1.

d. Process T4

T4 is the first process invoked and is the interface between SNR protocol

and the upper layer (the host). When it is invoked, it sets Transmit to TRUE, causing

process T2 to initiate the connection. The result of this phase is known through the global

variables T_active, Fail and Accept. If Fail is TRUE or Accept is FALSE,T4 sets Transmit

to FALSE and the protocol is stopped, and the host is notified of the failure, otherwise the

connection is established and data are transmitted between the two hosts. State diagram and

Predicate Action Table of T4 are shown in Figure 7.

Transition Predicate Action
signal transmission signal from the host Transmit := T; Accept := T
fail Fail = T Transmit := F;

notify host of failure to connect;
unaccept Accept = F notify host of unacceptable connection
start T_active = T null
write not (Full (OUTBUF))A not(eot) A

T_active=T
Enqueue (data stream from the host,

OUTBUF)
finish eot A T_active = T Transmit := F
confirm T_active = F notify host of completion
disc T_active = F notify host of disconnect

Figure 7: T4 State Diagram and Predicate-Action Table

2. Receiver Processes

a. Process Rl

Rl removes the received data packets from T_CHAN and either inserts

them into the buffer INBUF (mode 1 or 2) or passes them to the host directly (mode 0). It

starts its function when R_active is set to TRUE by machine R2. State diagram and

Predicate Action Table are shown in Figure 8.

14

Transition Predicate Action
start K_active = 1 null
finish R_active = F A Empty (1NBUF) nuü
receive T_CHAN (front) = DATA null
no_buf mode = 0 Pass TJJHAN (front) to the host;

Dequeue (T_CHAN)
buffer mode = 1 v mode = 2 Order insert(T_CHAN(front), INBUF,

RECEIVE, LWr, dupücate);
if not duplicate then

received := T;
Process jacket (T_CHAN(front).seq, RECEIVE,

AREC,Buffer_avaü,LWr,UWr,LOB);
end if;
Dequeue (T_CHAN);

Figure 8: Rl State Diagram and Predicate-Action Table

b. Process R2

Process R2 establishes the connection with the transmitter and thereafter

receives and processes the transmitter control packets. It starts its function upon reception

of a Conn_req message. Process R2 is the receiver counterpart of process T2. State diagram

and Predicate Action Table are shown in Figure 9.

c. Process R3

State diagram and Predicate Action Table of process R3 are shown in Figure

10. It has exactly the same structure and function as the process T3: it transmits the receiver

control packets periodically to the transmitter through R_CHAN and initiates an abnormal

connection if no transmitter control packets are received for a predetermined amount of

time.

15

Transition Predicate Action
ack T_CHAN (front) = Connßeq Evaluate {Conn req);

Dequeue (T_CHAN);
Enqueue [Conn ack, R_CHAN);

clock clock Jick A Empty (T_CHAN) inc (delay)
ok delay < reset Enqueue (Conn ack, R CHAN);
timeout delay = reset nuü
start 1 _CHAN (front) = Conn confv R_active:= '1;

T_CHAN(front) = T state v if T_CHAN(front) = Conn con/"then
T_CHAN(front) = Data Dequeue(T_CHAN);

end if;
finish Disconnect = T v T_CHAN(front)=Dwc R_active := F;
update T_CHAN(front) = T state A scount := 0;

T_CHAN(front).seq > high high := T_CHAN(front).seq;
Dequeue (T CHAN);

discard ('l'_CHAN (front) = Connjonfv
T_CHAN(front) = Conn req) v

(T_CHAN(front) = Tjtate A

T_CHAN(front).seq <= high))

Dequeue (T_CHAN);

lost_ack _I'_CHAN(front) = Conn req Dequeue T.CHAN);
Enqueue (Conn_ack, R_CHAN)

Figure 9: R2 State Diagram and Predicate-Action Table

Transition Predicate Action
start K_active=l null
clock clock_tick A R_active='l' inc(scount)
no_data received=F inc(count)
delay count<k A scounKLim null
timeout count=k v scount>=Lim enqueue(R_state,R_CHAN);

k:=min(2*k, klim)
data received=T enqueue(R_state, R_CHAN);

k:=l
no_disc scounKLim received :=F; count:=0
disc scount=Lim Disconnect;=T
confirm R_active=F null
finish R_active=F null

Figure 10: R3 State Diagram and Predicate-Action Table

16

d. Process R4

Process R4 is the interface to the receiving host. It passes the data in INBUF

to the host and notifies it of any errors that occur. State diagram and Predicate Action Table

of process R4 are shown in Figure 11.

More details of the receiver processes implementation can be found in [Ref.

22].

retrieve

Transition

finish

disc
accept

err chk

Predicate
^Tacrlve^T^^
R_active = V A Empty (INBUF) A

Disconnect = F
Disconnect = T
Disconnect = F A

not (Empty(INBUF))A

mode=l v mode=2 A

signal from host
mode = 1
Wait (INBUF, RECEIVE) = f~
Wait(INBUHRKCmVt!) = r.1

mode = 2

Action
sr
Sffl~

notify host of disconnect
JuTT

nW
null
Retrievejnodel (INBUHREC'KIVF;,

AREC,buffer_avail,LWr,UWr,LOB);
Retreive_mode2 (INBUF.RECEIVE, buffer_avaü);

Figure 11: R4 State Diagram and Predicate-Action Table

17

18

III. IMPLEMENTATION OF THE TRANSMITTER

A. GENERAL APPROACH

1. Introduction

The software implementation of the protocol will be done on the Naval

Postgraduate School FDDI (100 Mbps) network, which is composed of three workstations

with two different versions of the Unix operating system, one IRIX and two SOLARIS

system.

Consequently, the portability of the resulting product is an important issue that must

be taken into account from the beginning. Protocols are implemented at the low level of the

operating system (the kernel level) to take advantage of the facilities and functions

available at that level, which are sometimes different from one version to another.

Moreover, this is not considered in the specification of the protocol and left as abstraction.

As mentioned in early chapters, minimizing the overhead of the operating system

in order to speed up the overall execution of the software is our main goal and for that

reason we chose to use the C programming language to help achieving this goal by allowing

more flexibility to access the operating system functions with efficiency. It is easier to

execute system calls with minimum cost, i.e, minimum number of instructions. In addition

it helps developing portable code.

Dealing efficiently with the inevitable overhead caused by the operating system

related functions is the most important implementation issue in this thesis.

On the other hand, the basic idea of the design of the SNR protocol is to have four

different machines (processes) on the transmitter side that work in parallel, and other four

processes on the receiver side. Since the number of processors in the workstations used to

implement this protocol is less than the number of processes executing in parallel,

expensive operations, such as context switches to save the current status of the CPU during

scheduling are needed. In fact, the scheduler on the Unix system belongs to the general

class of operating system schedulers known as round robin with multilevel feedback,

19

meaning that the kernel allocates the CPU to a process for a time quantum, preempts a

process that exceeds its time quantum, and feeds it back into one of several priority queues

[Ref. 9]. A process may need many iterations through the "feedback loop" before it

finishes, therefore, a lot of overhead is involved, slowing down the execution of the

program.

Context switches are also necessary to handle the clock tick event used by both

machine T2 during the connection establishment and by machine T3 to execute its function,

as will be explained later in this chapter.

The SNR protocol will be implemented on top of the Internet Protocol (IP), a

connectionless protocol that has been developed for the network layer. Therefore an

interface is needed to access the IP facilities. An SNR header is added to the packet before

it is given down to the IP protocol, which has the responsibility for routing and relaying

packets in an internet environment.

Each protocol has to have an identifier, so the IP layer knows what protocol it deals

with. We chose to assign 191 as the SNR identifier.

2. The Raw Socket

The Unix operating system provides the socket interface to support communication

protocols and creates an endpoint for communication. The types of socket currently defined

are:

. stream socket: provides sequenced, reliable, two-way connection based byte

streams.

. datagrams socket: supports datagrams (connectionless, unreliable messages of a

fixed maximum length).

. sequenced packet socket: provides a sequenced, reliable, two-way connection

based data transmission path for datagrams of fixed maximum length.

. RDM socket: not implemented yet.

20

. raw socket: available only to the super user and provides access to the internal

network interface, generally used to develop new protocols.

The first two types are designed to support the Internet TCP and Internet UDP

protocols respectively.

In the current implementation of the SNR protocol we chose to build the interface

to the underlying protocol layer (the IP protocol) by using the raw socket, since it is

designed to support developing new protocols. It will be used to implement the transmitter

channel (T_CHAN) mentioned in the specification and left as abstraction. The system call

"sendto" is used in this case. To implement the receiver channel (R_CHAN) a circular

buffer is used, and packets received from the raw socket, using the system call

"receivfrom", are enqueued in this buffer and later processed by T2 during the connection

establishment and by T3 to receive the receiver state packets, as will be shortly explained.

3. Shared Memory

Since the implementation of the SNR transmitter, as well as the receiver, involves

the interaction of four different processes, we have to look carefully at the different

methods that are available for different processes to communicate with each other.

In traditional single process programming, different modules within the single

process can communicate with each other using global variables, functions calls and the

arguments and results passed back and forth between functions and their callers. In our case

instead, we deal with separate processes, executing in parallel, each with its own address

space and hence, there are more details to consider.

The unix system supports three types of Inter-Process Communication (IPC):

messages, semaphores and shared memory.

Messages allow processes to send formatted data streams to an arbitrary process.

Data is transmitted between processes in discrete portions called messages.

21

Shared memory allows processes to share parts of their virtual space. This is done

by allowing processes to set up access to a common virtual memory address space, and the

sharing occurs on a segment basis, which is memory management, hardware dependent.

Semaphores allow processes to synchronize execution by doing a set of operations

atomically on a set of semaphores. Communication is made through the exchange of

semaphore values. As a form of Inter-Process Communication, they are not used for

exchanging large amounts of data.

In this current implementation of the SNR transmitter we will use the shared

memory mechanisms along with semaphores to synchronize the access of different

machines to some global variables that constitute critical sections, which we will detailed

later in this chapter.

This sharing of memory provides the fastest means of exchanging information

between processes since data is not moved at all. A segment is first created outside the

address space of any process, and then each process that wants to access it, executes a

system call to map it into its own address space. Several hardware segmentation registers

are used to address data segments, and the system keeps one or more of these registers free

to make this mapping very fast. Since the shared segment is within the process's address

space, access to it is just as fast as access to local variables.

4. Timing Mechanism

As mentioned in the protocol specification [Ref. 3], the timing mechanism is based

on an event, called "clock-tick" and occurs periodically at Tin second intervals. To

implement this mechanism we use the interval timer facility provided by unix system. This

facility is a powerful tool that provides the microsecond resolution and allow the user to

specify both an offset from the current time (the delay), and the recurrence time (the

interval). The timer will not fire until the delay has passed, and then will continue to fire at

the end of each interval.

1. in fact^esolution is machine dependent and limited by the interval clock of the machine.

22

This timer is used by both machine T3, to send transmitter control packet every Tin

second and by machine T2 while establishing the connection. Tin is given by the formula:

Tin = max(RTD/kou,IPT), where RTD is the estimated round trip delay for the logical

connection, the constant kou is typically a power of two, such as 16 or 32, and IPT is the

average time between two data packet transmission. RTD is computed during the

connection establishment using the "gettimeofday" system call just before sending a

request to get the old date and just after receiving the acknowledge of the same request to

have the new date. The difference between old and new date is equal to RTD.

5. Using Signals

The way the timing mechanism, explained in the previous paragraph, works, is by

sending a signal called "SIGALRM" each time the delay, specified in the system call has

passed. The process using the timer, needs to arrange and catch this signal.

Beside SIGALRM, two other signals are used in the current implementation of the

SNR transmitter as follows:

. SIGUSR1: used by machine T2 to terminate T2_slave process that is responsible

for receiving packets from the raw socket.

. SIGUSR2: sent from T2 to process T4 to inform the latter about the end of the

connection establishment phase. By this way we avoid the busy waiting of T4.

B. TRANSMITTER MACHINES

1. Time Dependency

Machine T4 is invoked the first by signal from the upper layer (when the user needs

a service). It then gets the shared memory identifier and attaches it to its address, initializes

the global variables, including the negotiated parameters, forks2 T2 and then waits the

2. fork-exec is the way processes are created in UNIX system.First a process forks,meaning that it
makes a copy of itself,and then by exec system call,this copy will be replaced by the process we
want to execute.

23

arriving of the signal SIGUSR2, sent by T2 at the end of the connection phase. T2 begins

by forking T2_slave, the fifth process added to the protocol to receive packets from the raw

socket, enables the timer to fire every Tin microsecond (T;n is first chosen to be 50

milliseconds) and then executes the standard three way hand-shake connection

establishment with the receiver, which we will detail later. At the end of this procedure, it

sends the signal SIGUSR2 to T4, which depending on the result of the connection phase,

terminates the session by notifying the host or, forks the remaining machines, Tl and T3,

and from that point in time, all machines begin executing in parallel following their

specification. Figure 12 shows the time dependency between machines invoked in the

transmitter part of the SNR protocol.

2. Critical Sections and Synchronization

By using the shared memory for communication between processes, the speed to

access data is guaranteed to be very fast, as explained earlier in this chapter. However, at

the same time we introduce a new problem of critical section and data consistency, and

therefore, a way to synchronize the access to global variables is needed. However, this

problem arises only when more than one process wants to change the value of the same

variable.These common sources will be controlled by semaphores and before a process can

obtain that resource and change its value, it needs to test the current value of the semaphore,

which is stored in the kernel, and depending on that value, it can access that variable with

the guarantee that no other process can interfere with it until it will be released, or it waits

until it will be freed.

In Table 1, global variables are shown along with processes that access to them.

Column "set by " is used to determine the resource, accessed by more than one process, and

thus needs to be controlled by semaphore.

24

Figure 12: Timing Dependency

As can be seen in Table 1, we need four semaphores for the variables: Sent, Scount,

NOU and LUP. Although Transmit is accessed by both T2 and T4, we do not need a

semaphore because it is set to TRUE only once at the beginning by T4, and later if it is

necessary, it will be set only to FALSE, either by T2 or T4.

25

3. SNR Packets Format

Transmitter and receiver control packet format and data packet format are detailed

in [Ref. 3] and in this thesis we use these same three formats and add another four types

of packets needed to implement the protocol: Connection request packet, connection

acknowledge packet, connection confirmation packet and disconnection type packet. In

addition we define the SNR header to be as follows: LCI, type, block-no, packet-no within

the block and data_length. Table 2 shows the SNR header format. The header will be the

same for all seven types of packets. The sequence number defined in [Ref. 3] is divided into

block-no and packet-no. Data_length (16 bits) was not defined in the original specification

and added in this thesis to allow the transmission of different types of files including binary

files. When dealing with binary files it is difficult to define a special character indicating

the end of the file, since in this protocol the data packet length is fixed and consequently

sometimes padded characters are added to the last data packet. This new field allows the

receiver to separate padded characters from the original data. Also in this implementation,

we always send an exact number of blocks, and consequently, we sometimes add empty

packets to complete a block. The data_length for these empty packets will be zero (0).

SNRJHDR: common to all types of packet, Table 2 shows the format of the SNR

header and in Figure 13, its C definition is shown.

LCI is the logical connection identifier, which is a unique sequence number across

all the logical links which the host computer is engaged in. The type field identifies the type

of the packet and ranges from 0 through 6. Block number used only for type 2 (data packet)

and contains the number of the block being transmitted (received). Packet number is used

for all seven types and contains the packet number (for data type packet, contains the

number of the packet within the block).

26

set by read by

Transmit T2,T4 T2

Accept T2 T2,T4

Fail T2 T2,T4

T_active T2 T1.T3.T4

Sent T1,T3 T3

Disconnect T3 T2

Scount T2,T3 T3

NOU T1.T2 Tl

Buffer T2 Tl

TAIL T4 T1,T2,T4

TRANS Tl T1,T2,T4

RETRANS T2 T4

LUP T1,T2 Tl

Table 1: Accessing Global Variables

LCI type block-no packet-no datajength

Table 2: SNR Header Format

27

typedef struct {

u_char block-no; // 8 bits

u_char packet-no; // 8 bits

} SEQ;

struct SNRJHDR {

u_char lei; // 8 bits

u_char type; // 8 bits

SEQ seq;

u_short datajength; // 16 bits

};

Figure 13: SNR Header Definition

Receiver control packet (R_state): contains the state information of the receiver.

Table 3 shows the format of the receiver control packet.

SNRJHDR k LWr Buffer-avail LOB Error-check

Table 3: Receiver Control Packet (type 0)

struct rstate

int k;

int LWr;

int Buffer-available;

u_char LOB[size_LOB];

int Error-check;

};

Figure 14: C Definition of the Receiver Control Packet (type 0)

28

The sequence number of the packet is given by packet-no field of the SNR header

and block-no is not used in this case; k, LWr, Buffer-avail and LOB contain values of

receiver variables just prior to the transmission of the packet. The variable k is the interval

between two control packet transmissions of the receiver in unit of Tin, LWr is a block

sequence number such that all the blocks with sequence numbers less than this have been

correctly received and acknowledged, Buffer-avail is buffer space available at the receiver

in units of blocks, and LOB is a bit map representing the outstanding blocks between LWr

and (LWr + L - 1) where L is the maximum window size. The first bit of LOB corresponds

to LWr and is always set to 0. The other bits are set to 1 if the corresponding blocks have

been received correctly, otherwise they are set to 0. LWr and LOB fields are used together

to acknowledge the blocks received correctly. The last field contains an error detection

code.

Transmitter control packet (T_state): contains the state information of the

transmitter. The packet format is shown in Table 4 and in Figure 15 a C definition of the

same packet is given.

SNR_HDR UWt No-blocks Error-check

Table 4: Transmitter Control Packet Format (type 1)

struct tstate {

int k;

int UWt;

int No-blocks;

int Error-check;

};

Figure 15 : C Definition of Transmitter Control Packet

29

SNR header is similar to other packets except that the type field contains 1 to

indicate that this packet contains the transmitter's state. The next two fields contain the

values of the variables k and UWt of the transmitter just prior to the transmission of the

packet. Similar to the receiver control packets, k is the interval between two control packet

transmissions of the transmitter in units of Tin, updated by machine T3, UWt is the

maximum sequence number of the block below which every block has been transmitted,

but not necessary acknowledged, No-blocks field contains the number of blocks in the

OUTBUF buffer waiting to be sent and this is given by the formula:

(MAXBUF + (TAIL - RETRANS)) mod MAXBUF

Data packet format: in addition to the SNR_HDR where type field contains 2 to

indicate that this packet contains the data, we have the data field whose length is constant

throughout the connection, and determined during the connection establishment phase. If a

message does not fit into an integral number of packets, the space in the last packet will be

padded with null characters. This is intended to simplify the packet processing in the

receiver, the block-no extends across the lifetime of the connection, and the packet-no gives

the sequence number of the packet within the block. The format of the data packet and its

C definition are given in Table 5 and Figure 16 respectively.

SNR_HDR data Error-check

Table 5: Data Packet Format (type 2)

struct packet {

u_char data[DEF_DATALEN];

int Error-check;

};

Figure 16: C Definition of the Data Packet

30

Connection request packet format: contains the negotiated parameters that both the

transmitter and receiver must agree on before sending any data. The format and C definition

of the connection request packet are shown in Table 6 and figure 17 respectively.

SNR_HDR mode-communi-
cation

peak-bandwidth packet-size block-size receiver-buffer RTD

Table 6: Connection Request Packet Format (type 3)

struct connection {

int mode_communication;

int peak_bandwidth;

int packet_size;

int block_size;

int receiver_buffer;

int RTD;

};

Figure 17: C Definition of Connection Request Packet

In the SNR header, block-no is not used and packet-no field contains the sequence

number of the packet, type field is equal to 3, mode-communication field contains 0, 1 or

2, one of the three defined mode of operation of the SNR protocol, peak_bandwidth

contains the maximum bandwidth during the connection, the next two fields contain the

packet size and block size which remain constant during the connection, receiver_buffer

field contains the buffer required at the receiver in units of blocks and since this value is set

by the receiver, this field is used only for the conn_ack packet (type 4). The RTD field also

is not used in this type of packet. It contains the estimated round trip delay in microseconds,

31

which is computed by the transmitter (T3) and available only for the conn_conf packet

(type 5). The same format of packet is used for type 3, 4, 5 and 6 to make the processing of

packets easier.

4. Data Structure

The four transmitter machines, Tl through T4, communicate through global

variables in shared memory as explained earlier in this chapter. The structure of this shared

memory, called GLOB and pointed to by "gptr" is shown in Figure 18.

typedef struct {

struct sockaddr_in destination;

Mesg DATA;

FLAG F;

struct connection con;

lup LUP[max_lup];

u_char mode;

int RTD;

int UWt;

int sock;

int Tin;

int L;

int lei;

int Tl_pid;

int T2_pid;

int T3_pid;

int T4_pid;

} GLOB;

Figure 18: Data Structure of the Global Variables in Shared Memory

32

Mode, of type unsigned character, is initialized by machine T4 and defines the

mode of communication of the connection, RTD the round trip delay, estimated by T2,

UWt, updated by Tl, is the sequence number of the block, below which all blocks are

transmitted, sock is the raw socket identifier obtained by T4 during the initialization phase,

Tin is the period of the timing mechanism of the protocol, L is the maximum window size,

lei is the logical connection identifier, Tl_pid through T4_pid are the processes identifiers

of the four transmitter machines, destination is a system structure that holds the address of

the receiving host, passed to T4 when it is first invoked. DATA is a structure that defines

the OUTBUF ring buffer and is shown in Figure 19.

typedef struct {

int RETRANS;

int TRANS;

int TAIL;

struct packet OUTBUF[MAXBUF];

} Mesg;

Figure 19: OUTBUF Ring Buffer Structure

F is a structure of type FLAG, shown in Figure 20 and defines the global variables

that cause different machines to make their transition and communicate with each other.

Con is a structure of type connection, shown in Figure 17 and contains the

negotiated parameters, and finally LUP is the lup_table with size maxjup and contains lup

structure shown in Figure 21.

T2 and T2_slave communicate the same way using the shared memory and the

structure used, called GLOB1 and pointed to by "gptrl," is shown in Figure 22.

33

typedef struct {

u_char Transmit;

u_char Accept;

u_char Fail;

u_char T_active;

u_char Sent;

u_char Disconnect;

u_char Scount;

int NOU;

int Buffer;

}FLAG;

Figure 20: FLAG Structure

typedef struct {

int seq;

int count;

int Ack;

}lup;

Figure 21: LUP Structure

typedef struct {

int s;

u_char flag;

R_CHANNEL RC;

} GLOB1;

Figure 22: Structure of Shared Memory between T2 and T2 slave

34

typedef struct {

int TRANS;

int TAIL;

struct RCH R_CHAN;

} R_CHANNEL;

Figure 23: R CHANNEL Structure

struct RCH {

u_char data[MAXPACKET];

};

Figure 24: RCH Structure

s is the socket identifier needed by T2_slave to receive from the socket, flag is a

boolean variable when reset to FALSE by T2 causes T2_slave to terminate, R_CHANNEL

is a structure that defines the receiver channel (ring buffer). Figures 23 and 24 show this

structure.

5. Functions used by Transmitter Machines

In the protocol specification [Ref. 3], subroutines used by both transmitter and

receiver were described in the form of algorithms using ADA's syntax. In this section the

C source code of these functions, along with other functions needed for the implementation,

are given. Access to global variables is made through gptr, a global pointer that points to

the shared memory.

void Enqueue(P): Inserts the data packet P at the end of the circular buffer

OUTBUF.

struct packet Dequeue(): Returns the data packet in the buffer OUTBUF

following the TRANS pointer and advances the TRANS pointer to the next location.

35

int Empty(): Returns true if TRANS = TAIL, indicating that there are no data

packets in the transmitter buffer.

int Full(): Returns true if there are no empty buffer locations in OUTBUF to write

data packets.In mode 0 true is returned if TAIL +1 = TRANS and in mode 1 and 2, true is

returned if TAIL +1 = RETRANS, all operations are modulo MAXBUF.

void Update_OUTBUF(LWr): Advances the RETRANS pointer of OUTBUF so

that it points to the buffer location just before the first packet of block number LWr, thus

leaving the acknowledged packets out of the retransmission buffer area.

int Expired_LUP(): Returns the sequence number of the first expired block, or if

none of the blocks has expired, it returns zero.

void Insert(UWt): After the transmission of a whole block of packets has been

completed (block number UWt), this function makes an entry into the LUP table for the

block and initializes the retransmission counter. The initial value of the retransmission

counter is calculated by the formula: RTD/Tin + cons.

void Update_LUP(LOB,LWr,k): Every time a control packet is received from the

receiver, the transmitter updates the LUP table using this function. To update the table, the

ACK bits of the acknowledged blocks are set to 1, thereby allowing new entries to be made

into the table, and the retransmission counters of the acknowledged blocks are decremented

by k, which is read from the receiver control packet.

void Balance(LOB,HOLD,LWr,LWt): In mode 1 or mode 2, every time a control

packet is received, this function, called by machine T2, decrements the global variable

NOU, accessed through the pointer gptr in shared memory, by the number of newly

acknowledged blocks. To accomplish this, the bit-map of the previous control packet,

which is stored in the variable HOLD, is compared with the LOB field of the currently

received control packet

int Acceptable(con_req): Evaluates the connection parameters in the con_req

packet received from the receiver. Returns true if all the parameters are acceptable.

36

void Enqueue_RCH(P): This function is used by T2_slave to insert the received

packet P into the R_CHANNEL buffer.

int Empty_RCH(): Returns true if R_CHANNEL is empty.

struct RCH Dequeue_RCH(): Returns the packet in the R_CHANNEL buffer,

following the TRANS pointer and advances the TRANS pointer to the next location.

int Full_RCH(): Returns true if there are no empty buffer locations in

R_CHANNEL.

void start_timer(t): Using this function, the internal clock system will send a

SIGALRM signal every t microseconds, and the process calling this function must catch

this signal.

void stop_timer(): This function causes the timer to stop.

int receiveit(): Returns true if R_CHANNEL buffer is not empty and the packet in

the front is of type connection acknowledgment (CON_ACK) or connection request

(CON_REQ). It also copies this packet into the con_req global packet of the calling

process. Returns zero otherwise. This function is used by T2 during the connection phase.

int receive_state(rs,seq,size): Returns true if the R_CHANNEL buffer is not

empty and the packet in the front, which is copied into rs, is of type R_state.

void tvsub(new_time,old_time): Given two "timeval" structure new_time and

old_time, this function returns the difference new_time - old_time, used when computing

the RTD.

int Checksum(ptr,nbytes): returns checksum of the nbytes bytes beginning at

address ptr. The checksum is returned in the low-order 16 bits (the integer is assumed 32

bits).

The C source code of these functions is given below:

void Enqueue(P)

struct packet P;

{

gptr->DATA.OUTBUF[(gptr->DATA.TAIL +1)% MAXBUF] = P;

37

gptr->DATA.TAIL = ((gptr->DATA.TAIL +1)%MAXBUF);

struct packet Dequeue()

f

gptr->DATA.TRANS = ((gptr->DATA.TRANS +1)% MAXBUF);

return(gptr->DATA.OUTBUF[gptr->DATA.TRANS]);

int EmptyO

{

return(gptr->DATA.TRANS == gptr->DATA.TAIL);

}

int Full()

{

if (gptr->mode) /* mode is 1 or 2 */

retum(((gptr->DATA.TAIL+l)%MAXBlIF)==gplr->DATA.RETRANS);

else /* mode 0 */

return(((gptr->DATA.TAIL+l)%MAXBUF)==gptr->DATA.TRANS);

}

void Update_OUTBUF(LWr)

int LWr;

{

gptr->DATA.RETRANS = (((LWr-l)*gptr->con.block_size)%MAXBUF);

}

int Expired_LUP()

{

int i;

for (i=0 ; i < maxjup; i++)

if ((gptr->LUP[i].Ack =0) &&(gptr->LUP[i].count ==0)) /* found it */

return(gptr->LUP[i].seq);

38

return(O); /* in case of the whole table was looked and conditions not satisfied */

I

void Insert(UWt)

u_char UWt;

{

gptr->LUP[((UWt -2)%max_lup)].seq = UWt;

gptr->LUP[((UWt -2)%max_lup)].count = (gptr->RTD/gptr->Tin) + cons;

gptr->LUP[((UWt -2)%max_lup)].Ack = 0;

void Update_LUP(LOB_ptr,LWr,k)

int LWr , k ;

u_char *LOB_ptr;

{

inti;

/* set the Ack of acknowledged blocks to 1 */

for (i=0 ; i < maxjup ; i++)

if (gptr->LUP[i].seq < LWr)

gptr->LUP[i].Ack=l;

for (i=0 ; i < sizeJLOB ; i++)

if((*(LOB_ptr+i))==l)

gptr->LUP[((LWr +i - 2)%max_lup) +l].Ack =1;

/* decremente counters of unack blocks */

for (i=0 ; i< maxjup ; i++)

if(gptr->LUP[i].Ack = 0)

if (gptr->LUP[i] .count <= k)

gptr->LUP[i] .count = 0;

else

gptr->LUP[i] .count = gptr->LUP[i] .count - k;

}

void Balance(LOB_ptr,HOLD_ptr,LWr ,LWt)

u_char *LOB_ptr, *HOLD_ptr;

int LWr,LWt;

39

int i;

for (i = LWt; i < LWr ; i++)

if (!(*(HOLD_ptr + i +1 - LWt)))

gptr->F.NOU-;

for (i = LWr ; i < (LWt + gptr->L); i++)

if((*(LOB_ptr + i -LWr + 1)) && !(*(HOLD_ptr + i - LWt + 1)))

gptr->F.NOU--;

for (i = (LWt + 1 - LWr + gptr ->L); i <= gptr->L ; i++)

if((*(LOB_ptr + i))

gptr->F.NOU--;

I

int Acceptable(con_req)

struct connection con_req;

if ((conjreq.mode_communication !=gptr->con.mode_communication) II

con_req.peak_bandwidth != gptr->con.peak_bandwidth) II

con_req.packet_size != gptr->con.packet_size) II

con_req.block_size != gptr->con.block_size) II

con_req.receive_buffer != gptr->con.receive_buffer) II

con_req.RTD != gptr->con.RTD) II)

return(O);

return(l); /* the else part */

}

void Enqueue_RCH(P)

struct RCH P;

i

gptrl->R_CHAN[(gptrl->TATL +1)%MAX_CHAN] = P;

gptrl->TATL = ((gptrl->TAIL

}

+ 1)%MAX_CHAN);

int Empty_RCHO

(

40

return(gptrl->TRANS == gptrl->TAIL);

struct RCH Dequeue_RCHO

gptrl->TRANS = ((gptrl->TRANS +1)% MAX_CHAN);

return(gptrl->R_CHAN[gptrl->TRANS]);

int FulLRCHO

{

return(((gptrl->TAIL+l)%MAX_CHAN)==gptrl->TRANS);

void start_timer(t)

int t;

{

if (t< lOOOOOO)

{

itv.it_interval.tv_sec = 0;

itv.it_interval.tv_usec = t;

}

else

{

itv.it_interval.tv_sec = t/1000000;

itv.it_interval.tv_usec = 0;

}

itv.it_value = itv.it_interval;

setitimer(ITIMER_REAL,&itv,(struct itimerval *)0);

void stop_timer()

{

itv.it_interval.tv_sec = 0; /* itv is a itimerval structure variable in "snrjr.h" file */

41

itv.it_interval.tv_usec = 0;

itv.it_value = itv.it_interval;

setitimer(ITIMER_REAL,&itv,(struct itimerval *)0);

int receiveitQ

struct RCH rpack;

register struct SNR_HDR *snr; /* pointer to SNR header */

register struct connection *uptr; /* start of the ACK packet */

if(Empty_RCH())

return(O);

rpack = Dequeue_RCH(); /* the else part */

snr = (struct SNR_HDR *) rpackdata;

uptr = (struct connection *) (snr + SIZE_SNR_HDR);

if((snr->lci==gptr->lci)&&((snr->type=CON_ACK)ll(snr->type==CON_REQ)))

{

con_req.mode_communication = uptr->mode_communication;

con_req.peak_bandwidth = uptr->peak_band width;

con_req.packet_size = uptr->packet_size;

con_req.bIock_size = uptr->bIock_size;

con_req.receive_buffer= uptr->receive_biiffer;

con_req.RTD = uptr->RTD;

return(l);

}

return(O);

int receive_state(rs,seq,size)

struct rstate *rs;

int *seq;

int size;

struct RCH rpack;

42

register struct SNR_HDR *snr;

register struct rstate *uptr /* start of the receiver state info */

if (Empty_RCH())

return(O);

rpack = Dequeue_RCH();

snr = (struct SNRJHDR *) rpack.data;

uptr = (struct rstate *)(snr + SIZE_SNR_HDR);

if ((snr->lci ==gptr->lci)&&(snr->type ==R_state))

{

rs->k = uptr->k;

rs->LWr = uptr->LWr;

rs->buffer_available = uptr->buffer_available;

bcopy(uptr->LOB,rs->LOB, size);

rs->Error_check = uptr->Error_check;

(*seq) = snr->seq.packet_no;

return(l);

}

return(O);

void tvsub(out,in)

register struct timeval *out;

register struct timeval *in;

{

if ((out->tv_usec -= in->tv_usec) < 0) /* subtract microsecondes */

{

out->tv_sec --;

out->tv_usec += 1000000;

}

out->tv_sec-= in->tv_sec; /* subtract seconds */

int Checksum(ptr,nbytes)

register u_short *ptr; // pointer to the first 2 bytes we need to compute the checksum

43

register int nbytes; // total number of bytes we need to compute the checksum

{

register long sum = 0; // holds the accumulated sum

u_short oddbyte; // used when nbytes is odd

register u_short answer; // holds the returned value(u_short assumed 16 bits)

while(nbytes > 1)

(

sum += *ptr++;

nbytes -= 2 ; // since ptr pointes to 2 bytes at a time

(

if (nbytes ==1) // takes care of case where nbytes is odd

{

oddbyte =0;

*((u_char *) &oddbyte) = *(u_char *) ptr;

sum += oddbyte;

}

// add back carry outs from top 16 bits to low 16 bits

sum = (sum » 16) + (sum & Oxffff); // add high-16 to low-16

sum += (sum » 16); // add carry

answer = -sum; // ones-complement, then truncate to 16 bits

return(answer);

C. MACHINE IMPLEMENTATIONS

In this section a C style algorithms for different transmitter processes are given.

Algorithms follow closely the state diagrams and the Predicate Action Tables introduced

in the specification of the protocol. Also, the fifth process, T2_slave, added to the protocol,

is presented in more details.

1. T2_slave Process

As mentioned earlier, this process is added to the protocol for implementation

reason. Invoked by T2, it is responsible for only receiving packets from the raw socket,

44

and enqueuing them into the R_CHANNEL. It executes this function as long as the variable

"flag" remains true (it is reset to FALSE by T2).

The T2_slave algorithm is:

local variable declaration;

attach shared memory GLOB1 to space address;

set signal SIGUSR1 to be correctly handled; // this signal is needed because

// the receivefrom is a blocking system call, that can be interrupted, and

// when it is time to quit, T2 deblocks it by sending this signal.

STATE = 0;

while(STATE != 2) // when it is time to quit, STATE is set to 2

switch(STATE)

{

case 0 :

if(flag==T)

STATE =1;

break;

case 1 :

if ((flag==T)&&(there is packet in raw socket))

{

strip off the IP header from this packet;

enqueue the resulting SNR packet into R_CHANNEL;

}

if(flag=F)

STATE =2;

break;

} // end case

// STATE is 2 so quit

detach shared memory and exit;

45

2. Process Tl

At the end of the connection phase made by T2, and if this phase is successful,

process Tl is forked by process T4. Initializes its local variables, attaches the shared

memory GLOB to its address space and begins executing following the structure of the

FSM diagram and the PAT specification described in Chapter II.

The Tl algorithm is given below:

local variables declaration and initialization;

UWt =1; retrans_count =1; trans_count =1;

attach the shared memory GLOB to address space (accessed through gptr);

open Sentsem, Nousem and Lupsem semaphores;(they are created by T4)

STATE =0;

while(STATE != 4) // when it is time to quit,STATE is set to 4

switch(STATE)

{

case 0 :

if(T_active==T)

STATE =1;

break;

case 1 :

if((T_active==T)&&(mode==2)&&(Expired_LUP()))//retrans.

{

index = (((Expired_LUP()-l)*b_size)+retrans_count);

blockjio = Expired_LUP();

packet_no = retrans_count;

packet = OUTBUF[index%MAXBUF];

add SNRJHDR to the packet;

compute checksum;

46

send it to raw socket using sendto system call;

acquire Sentsem semaphore;

Sent = T;

release Sentsem semaphore;

retrans_count++;

if(retrans_count > b_size)

{

retrans_count =1;

LUP[(Expired_LUP()-l)%L +l].count = Initial_value;

}

}

if(T_active &&

! EmptyO &&

(trans_count <= b_size) &&

((mode ==0) II ((NOU<L)&&((Buffer-NOU)>0)&&

((mode=l)ll !Expired_LUP()))))

{

retrans_count =1;

block_no = UWt;

packe t_no = trans_count;

packet = Dequeue();

add SNR_HDR to this packet;

compute checksum;

send it to raw socket using sendto system call;

acquire Sentsem semaphore;

Sent = T;

release Sentsem semaphore;

trans_count++;

47

}

if(T_active ==F) // quit

STATE = 4;

if(trans_count > b_size) // block compleated

{

trans_count =1;

UWt++;

copy UWt to global UWt; //used by T3 in T_state packet

STATE =2;

}

break;

case 2 :

if(mode==0) // no flow control

STATE =1;

else // mode is 1 or 2, so flow control

{

acquire Nousem semaphore;

NOU++;

release Nousem semaphore;

STATE =3;

}

break;

case 3 :

if (mode ==2) // error check

acquire Lupsem semaphore;

Insert(UWt);

release Lupsem semaphore;

STATE =1;

48

breack;

} // end case

// STATE is 4, so quit

detach the shared memory,close semaphores and exit;

3. Process T2

T2 is the first process "forked" by T4. T2 initializes its local variables, attaches the

shared memory to its space address/'forkes" T2_slave to begin receiving from the raw

socket, and executes its function in accordance with the specification of chapter II.

T2 process algorithm is given below:

local variables declaration;

reset =10; max_attempts =3; // used for the connection phase

sequence =1; // receiver control state_packet number

attach GLOB to space address;

get and attach shared memory GLOB1 (used with T2_slave)

flag =1; // 1 means TRUE, this for T2_slave to begin(flag is in GLOB1)

fork T2_slave;

open Scountsem,Nousem and Lupsem semaphores;

sighold(SIGALRM) // ignore this signal for now

set the SIGALRM signal to be handled //for the clock_tick implementation

start_timer(DEFAULT_Tin);

STATE =0;

while(STATE != 8) // 8 means quit

switch(STATE)

{

case 0 :

if(Transmit==T && Accept==T && Fail==F)

49

{

timer_flag =0 // it will be put to 1 when SIGALRM arrives

sigrelse(SIGALRM) //now the timer will pop every Tin usec

gettimeofday(old_t) // used to compute RTD

send the con_req type packet to raw socket;// using sendto call

STATE =1;

}

break;

case 1 :

if(receiveitO) // the R_CHANNEL(front) = conn_req

{

stop_timer();

if(Acceptable(con_req)) // receiveit() dequeue into con_req

{

gettimeofday(new_t); // new_t - old_t is RTD

tvsub(new_t,old_t); // the difference is in new_t structure

RTD = new_t.tv_sec* 1000000 + new_t.tv_usec;

Tin = RTD/kou;

T_active = T;

send a CON_CONF packet to the receiver;

STATE =2;

}

else // unacceptable

{

Accept = F;

STATE = 8;

} // end else unacceptable

send SIGUSR2 to T4 // T4 waits to be awaken by this signal

50

} // end if receiveit()

else // we don't receive a packet

if(timer_flag ==1) // clock case(SIGALRM was arrived)

{

timer_flag = 0 // reset it so next time we can detect SIGALRM

delay++;

STATE = 6;

}

break;

case 6 :

if (delay < reset) // OK case

STATE = 1;

else // timeout case

{

attempts++;

delay =0;

STATE =7;

}

break;

case 7 :

if (attempts < max_attempts) // retry case

{

gettimeofday(old_t); // computing RTD begins at this time

send another CONJREQ packet;

STATE =1;

}

else // quit

{

51

stop_timer();

FAIL = T;

STATE = 8;

send SIGUSR2 to T4;

}

break;

case 2 :

if((receive_state(rs,sequence,sizeof(LOB)))&&(Disconnect==F))

STATE = 3;

if(Disconnect = T) // abort case

{

T_active = F;

Transmit = F;

STATE = 8;

}

if((Transmit==F) &&

EmptyO &&

(Disconnect==F) &&

(((mode==2) && Empty_LUP()) II (mode != 2))) // finish

{

T_active =F;

send a DISC_TYPE packet;

STATE =8;

}

break;

case 3 :

if (sequence > high) // update case

{

52

acquire Scountsem semaphore;

Scount =0;

release Scountsem semaphore;

high = sequence;

STATE =4;

}

else // seq >= high so discart it

STATE =2;

break;

case 4 :

if(mode==0) // no flow control

STATE =2;

else // mode is 1 or 2, flow control

{

acquire Nousem semaphore;

Balance(rs.LOB,HOLD,rs.LWt,LWt);

release Nousem semaphore;

save rs.LOB into HOLD;

LWt = rs.LWr;

Buffer = rs.buffer_available;

Update_OUTBUF(LWt);

STATE = 5;

}

break;

case 5 :

if(mode==l) // no error check

STATE =2;

if(mode==2) // errorcheck

53

{

acquire Lupsem semaphore;

Update_LUP(HOLD,LWt,rs.k);

release Lupsem semaphore;

STATE = 2;

}

} // end switch

// case 8,quit

flag =0; // used by T2_slave

send SIGUSR1 signal to T2_slave;

detach shared memory, close semaphores and exit

4. Process T3

Upon successful connection phase, T2 sends a signal (SIGUSR2) to T4 process,

which looks at global variables set by T2 in shared memory to see the result of the

connection phase. At that time,T3 process will be forked by T4 if the connection is

established. The following is a C style algorithm of T3:

declare local variables;

STATE =0; // defines the FSM of T3

count =0; // used to ...

UWt =1; // used to update the global variable UWt

attach shared memory;

open Sentsem, Scountsem semaphores;

initialize SNR_HDR;

set signal SIGALRM to be handled properly when it arrives;

hold this signal for now;

54

while(STATE != 6) // STATE will be set to 6 to quit

switch(STATE)

{

case 0 :

if(T_active is TRUE) // start

{

start_timer(Tin); // now the timer will pop each Tin usec

STATE = 1; // move to the next state

}

break;

case 1 :

if(T_active is FALSE) // quit

{

stop_timer();

STATE = 6;

}

else

{

sigpause(SIGALRM); // wait for clock-tick to arrive

acquire Scountsem semaphore;

increment Scount;

release Scount semaphore;

STATE =2; // move to state 2

}

break;

case 2 :

if(Sent is FALSE) // no data has been transmitted

{

55

increment count;

STATE = 3; // move to state 3

}

else // Tl has sent data,so send control packet

{

snr_hdr->seq.packet_no++; // increment sequence no

// prepare fields of control packet to send

control_packet.k = k;

controLpacket.UWt = global_variable UWt;

control_packet.No_blocks=(MAXBUF+(TAIL-

RETRANS))%MAXBUF

send control packet using sendto system call;

k=l;

STATE =4;

}

break;

case 3 :

if((count < k)&&(Scount < Lim)) // delay

STATE =1;

else // timeout

{ // send control packet with same parameter as case 2

increment sequence no of control packet;

update control packet(k,UWt,No_blocks);

send it to the raw socket using sendto system call;

k = MAX(2*k, k*Lim));

STATE = 4;

}

break;

56

case 4 :

if(Scount < Lim) // no disconnection

{

acquire Sentsem semaphore;

Sent = FALSE;

release Sentsem semaphore;

count =0;

STATE =1;

}

else // disconnect

{

Disconnect = TRUE;

STATE =5;

}

break;

case 5 : //to quit we wait until T_active, set by T2, becomes FALSE

if(T_active is FALSE) // quit

STATE =6;

break;

} // end case

detach shared memory and exit;

5. Process T4

T4 is the first process invoked in the protocol. In the current implementation we

assume the following:

57

When a user wants an SNR service, he invokes T4 by issuing the command "T4

destination", where destination is the name of the host which we want to connect to, data

to be transferred are assumed in a file named "my_file" and each line of this file holds a

complete data packet.

The C style algorithm of T4 is:

local variable declaration;

create shared memory GLOB using shmget system call;

attach GLOB to address space using shmat system call;

create Sentsem, Scountsem, Nousem and Lupsem semaphores;

transform destination name to internet address;

store this address in the global variable destination;

get the raw socket identifier using socket system call;

initialize global variables, including negotiated parameters;

set signal SIGUSR2 to be correctly handled;

open the file "my_data", data packet to be sent are in this file;

fork process T2;

wait T2 to establish connection, SIGUSR2 will arrive;

// at this point the signal has arrived

STATE =1;

while(STATE != 0) // 0 when we finish

switch(STATE)

case 1 :

if(FailisTRUE) //quit

{

Transmit = FALSE;

STATE = 0;

}

58

if (Accept is FALSE) // quit

STATE = 0;

if(T_active is TRUE) // start

{

fork Tl and T3;

STATE = 2;

}

break;

case 2 :

if(T_active is FALSE) // disconnect

STATE =0;

else

if(no data to transmit) // finish

{

Transmit = FALSE;

STATE =3;

}

else // write

if(!Full())

{

read one packet;

Enqueue(this packet);

}

break;

case 3 :

if(T_active is FALSE)

STATE =0;

} // end case

59

detach shared memory, close semaphores and exit;

60

IV. CONCLUSIONS AND RECOMMENDATIONS

This thesis describes the implementation of the transmitter part of the SNR protocol

(Transport protocol for high speed networks), made up with four different machines

working in parallel, using C programming language. The implementation of the receiver

part is done in parallel in a separate thesis. The implementation was done on top of the

Internet Protocol (IP) using three workstations running two different versions of Unix

Operating System (Solaris and Irix) and connected with FDDI network, allowing up to 100

Mbps throughput.

The structure of the C source code of each machine reflects the Finite State Machine

and the associated Predicate Action Table as presented in the specification of the protocol.

The conversion of the logic of the machines to C language environment is made straight

forward by a very clear specification, whose correctness was proved in previous thesis

work.

Dealing with the operating system functions efficiently in order to improve the

overall speed of the execution of the protocol was our main goal in our implementation.The

four transmitter machines were implemented as four Unix processes and therefore the

Inter-Process Communication (IPC) was an important issue in this implementation. The

four different processes use shared memory to communicate with each other, which

provides the best way in Unix facilities. An SNR packet is transmitted and received using

the raw socket, a form of IPC provided by Unix Operating System.

A fifth process is added to the transmitter protocol to interface with the IP layer by

receiving packets from the raw socket and enqueuing them into R_CHANNEL.

Some corrections and implementation details are added to the protocol. In Figure 6

and Figure 10, either one of the two conditions count = k or scount = Lim is sufficient for

the transition timeout to occur, in contrary to the specification, where the and is wrongly

used instead of or.

61

In order to send all types of data (including binary files), another field, datajength

(16 bits) is added to the SNR packet format, allowing the detection of the end of the file.

Also to guarantee the termination of the protocol without loosing the last packets, a

problem that is overlooked in the specification, the block-number and packet-number of the

last packet are sent with the disconnect packet.

Initially in the specification, only three different types of packet are defined,

R_state, T_state and data packets. Four other types are added to the protocol in this

implementation, necessary for the connection establishment and termination, Con_req,

Con_acq, Con_conf and Discjype packets.

Some of the problems we had in implementing the SNR protocol are:

. The signal facilities provided by Unix were unreliable in earlier versions, meaning

that race conditions existed and signals could get lost [Ref. 16]. Enhancements are made in

both versions under which we implement the SNR, to provide reliable signals. The problem

is these enhancements are not compatible and consequently, it was more difficult to ensure

the portability of the code.

. Since the number of processors is limited, the operating system decides which one

of the five processes to run first, using a scheduling algorithm. This random behavior

makes difficult the choice of the correct parameters of the protocol. These parameters must

be set so that even if we do not receive packets from the receiver for a long period, it does

not mean necessarily that the receiver is dead and it can be caused by a scheduling problem.

. The Tin interval of the protocol depends on the Round Trip Delay (RTD) which

is computed based on the system clock. The precision of this clock is limited and for high

speed networks, RTD can not be correctly computed.

Some tests were conducted on the protocol (transmitter and receiver) in all three

modes, using both versions of the Unix operating system (Solaris and Irix). These tests

were necessary to choose the correct parameters. The transmitter sends text files that can

be either found in a special directory or entered by the user. We used three types of text

62

files, small (less than 100 bytes), medium (between 100 bytes and 10 kbytes) and large files

(more than 10 kbytes). Packet sizes were 20, 28, 40 and 72 bytes, and 8 packets per block.

Errors are made by not sending or unacknowledged some packets, the lost packets were

eventually retransmitted by the transmitter. In each state of the protocol, statements are

printed on the screen showing the progress of the protocol. More details on the

implementation tests can be found in [Ref. 23].

In this thesis we showed that the SNR protocol can easily be implemented in

software using the current workstations.

Further improvement of this implementation could concentrate on:

. Implementing the SNR on top of the data link layer directly rather than using the

IP layer, which we expect results in a less overhead.

. Implementing the SNR in a multiprocessor environment (five processors for the

transmitter and five for the receiver), where each machine is dedicated to a different

processor.

. Make the existing applications (FTP, Email...) run with the SNR rather than TCP.

. Using multicasting, so the same transmitter can send data to more than one

receiver at a time.

. And finally testing and comparing the implementation with other transport

protocols such as TCP/IP.

63

64

LIST OF REFERENCES

1. Gerard J.Holzman.Design and validation of Computer Protocols.Prentice-Hall.Inc,
1991.

2 Lundy.G.M..Miller.R.E..Specification and Analysis of a Data Transfert Protocol
Using Systems of Communicating Machines.Distributed Computing 1991.

3 Gilbert M. Lundy, TipicLELSpecification and Analysis of the SNR High Speed
Transport Protocol. IEEE/ACM Transactions on Networking, Vol. 2, No. 5, October,
1994.

4 High.W..a Formal Protocol Test Procedure for the Survivable Adaptable Fiber Optic
Embedded NetworkfSAFENET).Master's Thesis, Naval Postgraduate School,
Monterey, California, March, 1993.

5 Leffler.S..Mckusick.M..Ouarterman.J..the Design and Implementation of the 4.3
BSD Unix Operating System.Addision-Weslev Publishing Company, 1989.

6 Kelley,A.,and Ira,R, A Book on C.second edition,the Benjamin/Cummings
Publishing Company,Inc, 1990.

7 Marc.J.R...Advanced Unix Prograrnming,Prentice-HallJnc, 1985.

8 Matthew.J..R..a Tool for Automated Validation of Network Protocolsjylaster's
Thesis, Naval Postgraduate School, Monterey, California, September, 1992.

9 Maurice.J..B..the Design of the Unix Operating System.Prentice-Hall,Inc,1986.

10 Misha,S.,Thomas,F. La Porta.Performance Analysis of MSP:Feature-Rich High-
Speed Transport Protocol.IEEE.Transactions on Networking vol.l,#6,December,
1993.

11 Morten.S..Implementation of Physical and Media Access Protocols for High-Speed
Networks.IEEE.Communication Magazine, June, 1989.

12 Netravali,A.,Roome,W.,and Sabnani.K..Design and Implementation of a High Speed
Transport Protocol.IEEE.Transactions in Communications,vol.38,#ll,November,
1990.

13 Olav.K..Applications of High-Speed Networks.Master's Thesis, Naval Postgraduate
School, Monterey, California, September, 1991.

14 01ah,A.,L.,and S.M.Heemstra de Groot.Design and Implementation Issues of End-
to-End Protocols in High-Speed Networks.Tele-Informatics and Open
Systems(TIOS) 1993.

65

15 Partridge.C, Gigabit Networking. 1994.

16 Stevens,W.,R.,Unix Network Programming,Prentice-HalLInc.l990.

17 Sharon,H.,and Dan,S.,Analysis of Transport Measurements Over a Local Area
Network.IEEE.Communications Magazine,June, 1989.

18 Stallings,W.,Data and Computer Communications.Fourth edition,Macmillan
Publishing Co., 1994.

19 Thomas,F.,La Porta,Architecture.Features and Implementation of High-Speed
Transport Protocols.GLQBECOM'gi .TEEE 1991.

20 ThomasJ.,D.,Design and Implementation of a Fiber Optic Link for a Token Ring
Local Area Network.Master's Thesis, Naval Postgraduate School, Monterey,
California, September, 1992.

21 Clark,D.,Jacobson,V.,Romkey,J. and Salwen.H..An Analysis of TCP Processing
Overhead.IEEE.Communications Magazine, June, 1989.

22 W. J. Wan, Implementation of the SNR High-Speed Transport Protocol (the Receiver
Part),Master's Thesis, Naval Postgraduate School, Monterey, California, March,
1995.

23 R. Grier.Test of the SNR Implementation.Master's Thesis, Naval Postgraduate
School, Monterey, California, March, 1995.

66

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Cameron Station
Alexandria, VA 22304-6145

2. Dudley Knox Library
Code 52
Naval Postgraduate School
Monterey, CA 93943-5101

3. Chairman, Code CS 2
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

4. Dr G. M. Lundy, Code CS/Ln 2
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

5. Colonel-Major Ezzeddine Dkhil 1
Direction de l'Informatique et de Statistique
M.D.N, 1030 Bab Mnara, Tunis/ TUNISIA

6. Lt-Colonel Med Bechir Echockl 1
Direction de l'Informatique et de Statistique
M.D.N, 1030 Bab Mnara, Tunis/ TUNISIA

7. Commandant Mezhoud Farah 1
Direction de l'Informatique et de Statistique
M.D.N, 1030 Bab Mnara, Tunis/ TUNISIA

8. Mr le Directeur 1
Direction du Personnel et de Formation
M.D.N, 1030 Bab Mnara, Tunis/ TUNISIA

9. Colonel Seilami 1
Direction des Transmissions
Quartier Bab-Saadoun, Tunis/ TUNISIA

67

